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[27], and Stuart [29] found spurious periodic solutions in
convergent methods for nonlinear reaction–diffusionIn this paper we investigate the onset of spurious fixed points

when Runge–Kutta methods are applied to study the dynamics of equation. Iserles [20] showed the existence of spurious
differential equations. It is shown computationally that the spurious fixed points in Runge–Kutta methods and predictor–
equilibria of Griffiths et al. [14] are connected at infinity with fixed corrector methods.
points inherited from the differential equation. We introduce and

In this paper we shall consider Runge–Kutta methodsstudy the concept of B-regularity which is in connection to the
applied to the autonomous scalar initial-value problemconcept of regularity introduced by Iserles. Q 1997 Academic Press

Principium cuius hinc nobis exordia sumet,
u9 5 f(u), t $ t0 ,

(1.1)
nullam rem e nilo gigni diuinitus umquam.
Nam si de nilo fierent, ex omnibus’ rebus u(t0) 5 u0 .
omne genus nasci posset, nil semine egeret.

De rerum natura, Liber Primus, 149. Lucrecio
This problem has a fixed point u*, also known as equilib-
rium point, critical point, or steady-state solution, when

1. INTRODUCTION
f(u*) 5 0. (1.2)

The growing interest in dynamical systems, in particular
in their chaotic behaviour, has stimulated a large amount of If f 9(u*) , 0, the fixed point is stable (neighbouring solu-
numerical investigation. Very often, numerical simulations tions are attracted to it), if f 9(u*) . 0 is unstable
are used to discover the dynamics of systems of differen- (neighbouring solutions are repelled). The case f 9(u*) 5
tial equations. 0 is degenerate and the stability of u* cannot be established

From the point of view of numerical analysis, the follow- by linearizing the differential equation.
ing questions arise: Given a system of ordinary differential A Runge–Kutta method may be written in the form
equations which is integrated by a given numerical method,
is the dynamics of the approximate solution a faithful de- un11 5 un 1 h ? f(un , h), (1.3)
scription of the dynamics of the continuous system? In
particular, are all the invariant sets (fixed points, limit where f is the increment function of the method. The
cycles, strange attractors) of the differential system approx- numerical fixed points are the values u*h such that un 5
imated by the numerical method? Does the longtime be- u*h for each n and consequently satisfy
haviour of numerical trajectories simulate that of the con-
tinuous system?

f(u*h , h) 5 0. (1.4)The approximation of invariant sets has been studied
by Braun and Hershenov [3], Doan [7], Kloeden and Lo-

Its stability or instability depends on whether u1 1 h(f/renz [24], Beyn [1, 2], Eirola [8, 9]. There are results that
u)(u*h , h)u ,1 or .1.prove that, if the parameter h of the discretization is suffi-

Let F be the set of all zeros of f, and let Fh denote theciently small, the numerical method has an invariant set
set all zeros of f. Iserles [20] has proved that F , Fh , butclose and similar to that of the dynamical system. The
Fh \F may be nonempty, so that the Runge–Kutta methodquestion as to the longtime behaviour, for fixed step-size
may have spurious fixed points, steady solutions whichh and the number of steps becomes unbounded, is quite
are a result of the discretization and not a feature of thedifferent. Brezzi, Ushiki, and Fujii [4] found spurious in-
underlying differential equation and may, consequently,variant cycles in Euler’s method for a differential equation
lead to erroneous computational results. As we shall showwith a Hopf bifurcation. Griffiths and Mitchell [13], Slee-

man et al. [28], Mitchell and Schoombie [26], Schoombie later, these spurious fixed points may appear below the
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TABLE Ilinearized stability limit of the scheme. Stable spurious
fixed points are undesirable since they attract a subset of

Scheme Fixed points Stable rangethe initial states and this asymptotic behaviour of the
scheme is clearly incorrect (Mitchell and Griffiths [13], Explicit Euler 1 0 , h , 2
Iserles [20]). Unstable manifolds of spurious solutions are Modified Euler 1 0 , h , 2
often connected to infinity (Mitchell and Griffiths [13], 0 , h , 21 1 Ï5 Q 1.2361 1

2
hStuart [29], Humphries [19]) and may affect the basin of

2 , h , 1 1 Ï5 Q 3.2362
hattraction of the essential fixed points, that is, the fixed

points of the differential equation. Improved Euler 1 0 , h , 2
The aim of this paper is to study why there exist these 2 , h , Ï8 Q 2.8282 1 h 6 Ïh2 2 4

2hspurious equilibria. The numerical method is considered
Heun 1 0 , h , 2.513

as a dynamical system parameterized by the time-step h * 4.9137 , h , 4.9552
and we apply techniques from bifurcation theory (Chow * 6.4799 , h , 6.4853

* 6.74405 , h , 6.74575and Hale [5]) and singularity theory (Golubisky and
RK4 1 0 , h , 2.785Schaeffer [12]). We show that spurious fixed points bifur-

* 2.785 , h , 3.4156cate from essential steady solutions of the numerical meth-
* 2.746 , h , 3.456

ods (Stuart [29], Iserles, Peplow, and Stuart [21]). If we
know the origin of the spurious solutions we can prevent Note. The entries with an asterisk mean that fixed points are known

to exist but no closed analytic form has been found.their appearance and we may find Runge–Kutta methods
that Fh ; F ; i.e., methods that are regular in the sense of
Iserles [20].

In Section 2 we study the branches of spurious fixed
computationally. The results are listed in Table I with thepoints of some explicit Runge–Kutta schemes applied to
corresponding stability range.the logistic equation (Griffiths et al. [14]). We show compu-

The family of explicit Runge–Kutta methods of twotationally that all spurious fixed points bifurcate from true
stages and order 2 can be written in Butcher’s notation asfixed points. In Section 3 we consider implicit Runge–

Kutta methods and study conditions in order to avoid possi-
0 u 0 0ble bifurcation of essential fixed points. In Section 4 we

consider the bifurcation of real fixed points and make some 01
2b

1
2bfinal comments. U

? (2.2)
2. BRANCHES OF SPURIOUS FIXED POINTS FOR u 1 2 b b

EXPLICIT RUNGE–KUTTA METHODS

I.e., the increment function isGriffiths, Sweby, and Yee [14] have investigated analyti-
cally and computationally explicit Runge–Kutta schemes
applied to the equation

f(u, h, b) 5 (1 2 b) f(u) 1 bf Su 1
h

2b
f(u)D . (2.3)

u9 5 f(u) 5 u(1 2 u), (2.1)

For b 5 1 we recover the modified Euler method and for
with two equilibrium points u 5 1, stable, and u 5 0, b 5 As, the improved Euler method.
unstable. In particular, they consider five explicit Runge– Let u* be a nondegenerate ( f 9(u*) ? 0) fixed point of
Kutta methods (Lambert [23]): (1.1). Then

(i) Explicit Euler.
(ii) Modified Euler. f

u
(u*, h, b) 5 f 9(u*) S(1 2 b) 1 b S1 1

h
2b

f 9(u*)DD(iii) Improved Euler.
(iv) Heun, a 3-stage third-order method. (24)
(v) The classical 4-stage fourth-order Runge–Kutta

method. and there exists a bifurcation point at

Some fixed points may be determined with the help of
an algebraic manipulation package: MAPLE, DERIVE, h* 5 2

2
f 9(u*)

. (2.5)
or MATHEMATICA. Other equilibria have been found
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To identify the nature of the bifurcation we can use
singularity theory (Golubnisky and Schaeffer [12]). Since

2f

u2 (u*, h*, b) 5 f 0(u*) S1
b

2 2D , (2.6)

and

f

h
(u*, h*, b) 5

1
2

f 9(u*) f(u*) 5 0, (2.7)

2f

uh
(u*, h*, b) 5

1
2

( f 9(u*))2 . 0, (2.8)

for b ? As we have a simple bifurcation or transcritical
bifurcation; that is, the bifurcation is locally equivalent to
the bifurcation in the origin of «v2 1 lv, where « 5
sgn((2f/u2)(u*, h*, b)). In particular for (2.1) f 0(u) 5
22 , 0 and then, if b . As (for example, in the modified
Euler method) « 5 1 and the normal form is v2 1 lv which
corresponds exactly to Fig. 1, obtained with the help of
the continuation software package AUTO and agrees with
the results of Griffiths et al. (Table I). The labeling of the FIGURE 2
branches of the bifurcation diagram indicate the sign of
f/u. The u corresponds to unstable fixed points, and s
is negative to stable fixed points. However, in the stable

Thompson and Stewart [31], Guckenheimer and Holmesbranches first (for h corresponds to the right boundary of
[15]) and the beginning the cascade in Fig. 2 of Griffithsthe stable range in Table I) h(f/u) 5 22 and, then,
et al. [14].there exists period-doubling bifurcation (Wiggins [32],

The branch of spurious fixed points 1 1 2/h appears
below the linearized stability limit 2 and is not connected
to any finite bifurcation point.

If b , As, « 5 21, for example, b 5 Ad; the normal form
is 2v2 1 lv which corresponds to Fig. 2, where the stable
spurious fixed points with h . 2 are above u 5 1.

Another type of bifurcation appears for the improved
Euler method (b 5 As). Now 2f/u2 5 0 and

3f

u3 Su*, h*,
1
2D5 2f -(u*) 1 3

( f 0(u*))2

f 9(u*)
(2.9)

for (2.1) and u* 5 1, f -(1) 5 0, f 0(1) 5 22, f 9(1) 5 21, and

3f

u3 S1, 2,
1
2D5 212 , 0. (2.10)

The bifurcation is locally equivalent to 2v3 1 lv and we
have the pitchfork of Fig. 3. In this example, the spurious
fixed points are out the stable range. A different nonlinear
problem may be chosen to obtain spurious fixed points
which turn back and exist for values h , h*. By using
again singularity theory, if 3f/u3 . 0 we would have a

FIGURE 1 pitchfork, but open from right to left. For the polynomial
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and

f

u
(0, h) 5

2
3

h2 1 2h 1 4 . 0, h $ 0 (2.13)

f

u
(1, h) 5 2

2
3

h2 1 2h 2 4 , 0, h $ 0 (2.14)

and there are not any finite bifurcation points. However,
for large h (2.12) is similar to u4(u 2 1)4 and each fixed
point for (2.12) generates a fixed point of multiplicity four.
In other words, from a bifurcation at infinity the branches
of spurious fixed points come from the right to the left as
h decreases. These branches correspond to the asterisks
in Table I. With the help again of the continuation software
package AUTO we have obtained Fig. 5, where we have
plotted the branches of fixed points of (2.12) which confirm
the comments before. The left boundary of stable ranges
in Table I corresponds exactly to the limit points of the
branch in Fig. 5.

For the classical 4-stage Runge–Kutta(v) applied to (2.1)

FIGURE 3 f(u, h) 5 2
h16

4096
u8(u 2 1)8 1 ... . (2.15)

Then for large h each of the fixed point generates a fixed
f(u) 5 2u3 1 3u2 2 4u 1 2, (2.11) point of multiplicity eight, so there should exist more

branches of spurious equilibria than those reported by
Griffiths et al. in their Table I. In fact, in Fig. 6 we plot awe have Fig. 4.

The analysis of Griffiths et al. [14] using perturbation
arguments and the analysis above show that it is possible
to predict the onset of spurious equilibria from essential
fixed points and also to determine the nature of some
bifurcations and the stability along the bifurcation
branches. However, we do not yet understand the origin
of some spurious fixed points, for example the branch
1 1 2/h in the modifier Euler method (Fig. 1 and Table I).

The Heun method applied to (2.1) has an increment
function,

f(u, h) 5 2
4h6

243
u4(u 2 1)4 1

16h5

81
u3(u 2 1)3Su 2

1
2D

2
8
9

h4u2(u 2 1)2 Su2 2 u 1
1
6D

1
20
9

h3u2(u 2 1)2 Su 2
1
2D (2.12)

2 4h2u(u 2 1) Su2 2 u 1
1
6D

1 4hu(u 2 1) Su 2
1
2D2 4u(u 2 1)

FIGURE 4
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ms21 and ms21 2 1 of these are spurious and they are in
branches of equilibria from bifurcation at infinity. To sum
up every explicit Runge–Kutta method with s . 1 is irregu-
lar and has spurious fixed points that bifurcate at infinity
from essential fixed points.

3. REGULARITY AND B-REGULARITY OF
RUNGE–KUTTA METHODS

We consider a general s-stage method written as

ji 5 f(un 1 h Os

j51
ai, jjj), i 5 1, ..., s, (3.1)

un11 5 un 1 h Os

i51
biji . (3.2)

We denote the method (3.1)–(3.2) in the customary way as

c1 u a1,1 ) a1,s

FIGURE 5 c u a _ u _ 5 _
? ;

cs u as,1 ) as,s
(3.3)

new branch of fixed points of (2.15), that is quite close to
u bT

?
u b1 ) bsthe unstable solution u 5 0.

In general, for every explicit Runge–Kutta method with
s stages if f(u) is a polynomial of degree m, then f(u, h) where ci 5 os

j51 ai, j , A denotes the matrix entries ai, j , and
is polynomial of degree ms. Then, for large h, each of the b is the vector (b1 , ..., bs)T. The increment function is
fixed points of f(u) generates a fixed point of multiplicity

f(u, h) 5 h Os

i51
biji(u, h), (3.4)

where ji(u, h) is the solution of the implicit system

ji 5 f(u 1 h Os

j51
ai, jjj) i 5 1, ..., s. (3.5)

Let F be the set of all zeros of f, and let Fh denote the
set all zeros of f which depend on h. In line with Iserles
[20] we say that a method (3.3) is regular, if F 5 Fh for all
h . 0 and all initial value problems (remember that
F , Fh for all Runge–Kutta methods). Iserles proved the
following theorem.

THEOREM 3.1. A two-stage Runge–Kutta method of or-
der p $ 2 is regular if and only if a1,1 1 a2,2 5 As.

From Section 2 it is clear that a necessary condition for
a Runge–Kutta method to be regular is that each fixed
point u* of the differential equation does not bifurcate.
This bifurcation is possible whenever (f/u)(u*, h) 5 0.

FIGURE 6 Differentiating (3.4) and (3.5),
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EXAMPLE 3.2. A general nonconfluent (c1 ? c2)f

u
(u*, h) 5 h Os

i51
bi

ji

u
(u*, h) (3.6) Runge–Kutta method with two stages and second order

can be written as
ji

u
(u*,h)5 f 9(u*) S11h Os

j51
ai, j

jj

u
jj

u
(u*,h)D , i51, ...,s,

c1 u a1,1 c1 2 a1,1

(3.7) c2 u c2 2 a2,2 a2,2

and (3.7) is equivalent to ? (3.14)
c2 2 1/2
c2 2 c1

1/2 2 c1

c2 2 c1
U

(1 2 hf 9(u*)ai,i)
ji

u
(u*, h) 5 f 9(u*) 1 hf 9(u*)

(3.8) With the help of an algebraic manipulation package we
obtain thatO

k?i
ai, j

ji

u
(u*, h), i 5 1, ..., s.

det(B(l)) 5 l(a1,1 1 a2,2 2 As) 2 1, (3.15)

Let j denote the vector (j1 , ..., js)T and let 1 be the s-
and det(B(l) ? 0 for each l if and only if a1,1 1 a2,2 5 Asvector with unit entries (1, ..., 1)T. Then (3.8) becomes
of Theorem 3.1 above.

To complete the proof, we consider the confluent case.
Second order implies that c1 5 c2 5 As and, using the alge-(I 2 hf 9(u*)A)



u
j(u*, h) 5 f 9(u*)1. (3.9)

braic manipulation package, we obtain again (3.15).

EXAMPLE 3.3. A general third-order SDIRK (simplyIn conclusion, the function (3.4) has a bifurcation point
diagonal implicit) method with three stages is given byof the fixed point u* if there exists a solution of the

[(s 1 1) 3 s]-dimensional system,
c u c

c2 u c2 2 c c(I 2 hf 9(u*)A)


u
j(u*, h) 5 f 9(u*)1,

(3.10) c3 u c3 2 a 2 c a c
(3.16)

bT 

u
j(u*, h) 5 0. ?

u b1 b2 1 2 b1 2 b2

We are thus led to the [(s 1 1) 3 s]-dimensional linear with the conditions:
system

b1 5
3c2(2c3 2 1) 2 3c3 1 2

6(c2 2 c)(c3 2 c)
, (3.17)(I 2 lA) ? h(l) 5 1, (3.11a)

bT ? h(l) 5 0, (3.11b)
b2 5

3c3(2c 2 1) 2 3c 1 2
6(c2 2 c3)(c2 2 c)

, (3.18)

where h 5 (h1 , ..., hs)T and l is a parameter. If we have
a solution of (3.11) for some l*, there is a possible bifurca- a 5

(26c2 1 6c 2 1)(c3 2 c)(c2 2 c3)
3c2

2(2c 2 1) 2 2c2(3c2 2 1) 1 c(3c 2 2)
. (3.19)

tion point of u* for the value of step h such that

h ? f 9(u*) 5 l*. (3.12) Now

Since
det(B(l)) 5 pB(l, c) 5 2

l2

6
(3c 2 1)(6c 2 1)

(3.20)

B(l) 5 SI 2 lA 1

bT 0
D (3.13) 1

l

2
(6c 2 1) 2 1,

and for c 5 Ah, a necessary condition for the regularity ofis (s 1 1) 3 (s 1 1) and (3.11) is [(s 1 1) 3 s]-dimensional,
then if det(B(l)) ? 0 for each l the system (3.11) has no (3.16) (Theorem 7 of Hairer, Iserles, and Sanz-Serna [17]),

pB(l, Ah) ; 21.solution, and u* does not bifurcate.
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For c 5 Ad, pB(l, Ad) 5 l/2 2 1 5 0 if and only if l 5 2, Assume now that a given method is B-irregular, so that
there exists l* ? 0 such that det(B(l*)) 5 0, and as-so we may have a bifurcation point when hf 9(u*) 5 2. In

order to confirm this we consider the third-order sume that
SDIRK method,

l* ?
1
lj

, j 5 1, ..., s (3.25)1/3 u 1/3

1/2 u 1/6 1/3
where l1 , ..., ls are the eigenvalues of the matrix A. Then

1 u 2 24/3 1/3 (3.21)
from (3.11a) h 5 (I 2 l*A)211 and (3.11b) is

?
u 3/4 0 1/4

bT(I 2 l*A)211 5
1

l*
(R(l*) 2 1) 5 0, (3.26)

Then

where R(l) is the stability function of the method (Hairer
and Wanner [18]). Then if exist l* ? 0 (for l* 5 0 (3.11)

un11 5 un 1
h
4

(3f(z1) 1 f(z3)), (3.22) has no solution by consistency) satisfying (3.25) such that
R(l*) 5 1, det(B(l*)) 5 0 and the method is B-irregular.
Also, since rank B(l*) 5 s is a simple root and there

where exists bifurcation point, spurious equilibria and the method
is irregular.

z1 5 un 1
h
3

f(z1), THEOREM 3.5. The condition R(l) ? 1 for l ? 0 satisfies
(3.25) is necessary to the B-regularity and regularity of the
Runge–Kutta methods.

z2 5 un 1 h S1
6

f(z1) 1
1
3

f(z3)D , (3.23)
When R(l) is irreducible, so that the poles of R(l) are

exactly the zeros of det(I 2 lA), R(l) 5 1 implies (3.25),
z3 5 un 1 h (2f(z1) 2

4
3

f(z2) 1
1
3

f(z3)D , then det(B(l*)) 5 0, and there exists a bifurcation point.
We next study the case when det(B(l*) 5 0 with l* 5

1/lj for some eigenvalue of the matrix A.
with ji 5 f(zi), i 5 1, 2, 3.

LEMMA 3.6. SetWe have studied the fixed points of (3.22) with z1 , z2 ,
z3 satisfying (3.23) using again the continuation package
AUTO in the case f(u) 5 u(u 2 1). Now u* 5 1 is unstable

Q 5SP 1

bT 0
D , (3.27)because f 9(1) 5 1, and the bifurcation must be at h 5 2.

In Fig. 7 we have plotted the variables u, z1 , z2 , and z3

against the parameter h; the bifurcation point for h 5 2 is
where P is a s 3 s singular matrix, b 5 (b1 , ..., bs)T, andclearly seen.
1 5 (1, ..., 1)T:For c 5 As, pB(l, As) 5 2l2/2 1 l 2 1 5 0 ⇔ l 5 3 6

Ï3 and for the third-order SDIRK method, (i) If rank P 5 s 2 1, then det Q 5 0 if and only if
bT j 5 0 or hT 1 5 0 with Pj 5 0 and hT P 5 0.

1/2 u 1/2 (ii) If rank P # s 2 2 then det Q 5 0.
2/3 u 1/6 1/2

Proof. (i) If rank P 5 s 2 1 'M, N not singular s 3 s
1 u 3/2 21 1/2 (3.24)

matrix such that

?
u 2 2 3/2 1/2

MPN 51
1

5

1

0
25SIs21

0
Dwe have found Fig. 8 with bifurcations at h 5 1.267949

and h 5 4.732051.

DEFINITION 3.4. A Runge–Kutta method (3.1), (3.2) is
B-regular if det(B(l)) ? 0 for each l ? 0. (Gantmakher [11]). Then the matrix
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FIGURE 7

SM 0

0T 1
D , SN 0

0T 1
D

51
Is21 0 _

0T 0 hT1

) BTj 0
2 ,

is two regular (s 1 1) 3 (s 1 1) matrices and
where Pj 5 0 and hTP 5 0 and the proof is straightforward.

(ii) If rank P # s 2 3 ⇒ rank Q # s 2 1 ⇒ det Q 5 0.
If rank P 5 s 2 2 the proof is by absurdum reduction.SM 0

0T 1
D SP 1

bT 0
D SN 0

0T 1
D5SMPN M1

bTN 0
D

Let us suppose that det Q ? 0:
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with c 5 1/2 1 Ï3/6 8 0.788675 and

det Q 5 |
p1,1 ) p1,s 1

_ 5 _ _

ps,1 ) ps,s 1

b1 ) bs 0
| det(B(l)) 5 2l2 SÏ3

4
1

5
12D1 l SÏ3

2
1 1D 2 1. (3.29)

Now for l* 5 1/c 5 6/(3 1 Ï3) rank(I 2 l*A) 5
s 2 2 5 1, and there is bifurcation because rank B(l*) 5
3. Figure 9 agrees with this prediction, we obtain exactly
two bifurcation points at h 5 0.9282108 and h 5 1.2678765

p1,1 ) p1,s 1

p2,1 2 p1,1 ) p2,s 2 p1,s 0

_ 5 _ _

ps,1 2 p1,1 ) ps,s 2 p1,s 0

b1 ) bs 0

8 1/0.788675, where det(B(l)) 5 0.

To sum up, in this section we have computed branches of
spurious fixed points in Runge–Kutta methods connected
with bifurcation points of essential fixed points u* at
h* 5 l*/f 9(u*), where l* is in one of the three follow-
ing cases:5 6 |

p2,1 2 p1,1 ) p2,s 2 p1,s

_ 5 _

ps,1 2 p1,1 ) ps,s 2 p1,s

b1 _ bs

| (i) R(l*) 5 1 with l* ? 1/lj , 5 1, ..., s, eigenvalues
of A.

(ii) l* 5 1/lj with lj eigenvalue of A and rank(I 2? 0 ⇒ rank P $ s 2 1,
l*A) 5 s 2 1 and bTj 5 0 or hT1 5 0, where (I 2 l*A)
j 5 0 and hT(I 2 l*A) 5 0.

(iii) l* 5 1/lj with lj eigenvalue of A and rank(I 2in contradiction to the hypothesis and then det Q 5 0.
l*A) # s 2 2, and rank B(l*) 5 s 2 p with p an even

We now conclude the following theorem which charac- number, which means l* is odd multiplicity.
terizes all B-regular Runge–Kutta methods.

In fact, the situation now is the following: the R-regular-
ity implies that the bifurcation points of the essential fixedTHEOREM 3.7. A Runge–Kutta method is B-regular if
points do not exist and in the opinion of the author theand only if
method is regular. ‘‘I admit that each and every thing
remains in its state until there is reason for change’’ (Leib-(c1) R(l) ? 1 for l ? 0.

(c2) Every eigenvalue of A has a one-dimensional null- nitz). The difference between B-regularity and regularity
space and its right and left eigenvectors satisfy bTj ? 0 and is when rank(I 2 l*A) # s 2 2 and rank B(l*) 5 s 2 p
hT1 ? 0. with p an odd number, then l* has even multiplicity and

may exist or not bifurcation point.
EXAMPLE 3.8. The third-order SDIRK method Hairer, Iserles, and Sanz-Serna [17] have proved that

(3.21) of Fig. 7 has no bifurcation at l 5 3 because the maximal order of Runge–Kutta methods such that
rank(I 2 3A) 5 3 2 1 5 2 and the left and right eigenvec- R(l) ? 1 whenever l ? 0 is p # s 1 2 if s, the number of
tors are h 5 (h1 , 0, 0)T and j 5 (0, 0, js)T, and bTj 5 stages, is even and p # s 1 1 if s is odd. However, they
Afj3 ? 0, hT1 5 h1 ? 0. did not know regular Runge–Kutta methods of order p .

4. Iserles [20] found regular methods of order 4, including
EXAMPLE 3.9. Consider the third-order SDIRK the method of Hammer and Hollingsworth (Lambert [23]),

method and these methods are B-regular too (Example 3.2).
If we look for B-regular Runge–Kutta methods of order

5, we have to consider s 5 4 and methods with stability1
2

1
Ï3
6 U 1

2
1

Ï3
6 function R(l) a rational approximation to el of order $5.

This approximation cannot be a Padé approximation1
2

1
2

1
Ï3
6U (Hairer, Iserles, and Sanz-Serna [17]).2

Ï3
6 Nevertheless, the situation is not quite so pessimistic

because if there exists l* such that R(l*) 5 1 or an eigen-(3.28)
1 0 1

2
1

Ï3
6

,U 1
2

2
Ï3
6 value of A does not satisfy condition (c2), in order that a

bifurcation point exist, step h must satisfy
?

Ï3
6

1
1
2U Ï3

3
1 12

Ï3
2

2
1
2

h ? I f 9(u*) 5 Il*, (3.30)
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FIGURE 8

h ? R f 9(u*) 5 Rl*, 4. R-REGULARITY AND BR-REGULARITY OF
RUNGE–KUTTA METHODS

where Rl* and Il* mean the real and imaginary part We are now going to consider the onset of real spurious
of the complex number l*. Therefore, each B-irregular fixed points for Runge–Kutta methods.
Runge–Kutta method has bifurcation from u* and When studying some real dynamical system using a numer-
branches of spurious fixed points exist only for those initial ical method with real floating-point arithmetic, we only

detect real essential fixed points and spurious real fixedvalue problems such that f 9(u*) solve (3.30) for some fixed
point u*. points. Our aim is to prevent the spurious behaviour.
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and this is possible if and only if a1 5 2As. Since a1 5
2trace A (Hairer and Wanner [18]), trace A 5 As, which is
the characterization of regularity of Iserles [20].

Let us now consider the BR-regularity of Runge–Kutta
methods, according to Section 3.

THEOREM 4.2. A Runge–Kutta method is BR-regular if
and only if

(cr1) R(l) ? 1, l ? 0, l [ R.
(cr2) Every real eigenvalue of A has a one-dimensional

null-space and its right and left eigenvectors satisfy bTj ?
0 and hT1 ? 0, respectively.

The question we now address is the construction of a
BR-regular Runge–Kutta method of order five.

A useful formula for the stability function of a Runge–
Kutta method is

R(l) 5
P(l)
Q(l)

5
det(I 2 lA 1 l1 ? bT

det(I 2 lA)
(4.2)

FIGURE 9

(Hairer and Wanner [18]). If we want a BR-regular method
of order 5 and three stages, we must look for a Padé

We say that a Runge–Kutta method (3.3) is R-regular approximations such that R(l) ? 1, l ? 0, l [ R, and
(R real), if for all h . 0 and all initial value problem (1.1), Q(l) ? 0, l [ R. The (3,2)-Padé approximation
every real zero of f is a zero of f. We say that (3.3) is BR-
regular if det(B(l)) ? 0, l ? 0, l [ R. It is then clear that

R3,2(l) 5
P3(l)
Q2(l)

5
1 1 Dgl 1 sE;l2 1 hQ;l3

1 2 Sgl 1 sQ;l2 (4.3)
R-regularity ⇒ BR-regularity ⇒ R(l) ? 1, ;l ? 0, l [ R.

(4.1)

satisfies these requirements, and the problem is reduced
to finding a 3-stage Runge–Kutta method with stabilityWhile R-regular methods do not have real spurious fixed
function (4.3) and order 5.points, BR-regular methods do not have real bifurcation

We consider the methodpoints, whenever f 9(u*) is real det(B(hf 9(u*))) ? 0.
The following theorem shows that there is no noncon-

0 u 0 0 0fluent Runge–Kutta method of two stages and order 2
(3.14) that is R-regular but which is not regular.

c2 u c2 2 a2,2 2 a2,3 a2,2 a2,3

THEOREM 4.1. A 2 stages non-confluent Runge–Kutta
c3 u c3 2 a3,2 2 a3,3 a3,2 a3,3

(4.4)
method of order p $ 2 is R-regular if and only if it is regular.

Proof. Obviously regularity implies R-regularity. ?
Assume that the method is R-regular. Because the u 1 2 b2 2 b3 b2 b3

method is at least of second order, R(l) is of the form

with

R(l) 5
1 1 (1 1 a1)l 1 (As 1 a1 1 a2)l2

1 1 a1l 1 a2l
2

a2,3 5 S2
5

2 a2,2D a2,2

a3,2
2

1
20a3,2

, (4.5)
and R(l) ? 1 for real l ? 0. Then,

a3,3 5
2
5

2 a2,2 . (4.6)
l 1 (As 1 a1)l2 ? 0, l ? 0, l [ R,
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The construction relies on the simplifying assumptions We are thus led to the following method

0 u 0 0 0
B(p): Os

i51
bic

q21
i 5

1
q

,
1960
12839

8647
39231

2
1104
61261

6 2 Ï6
10 Uq 5 1, ..., p, (4.7)

(4.13)3197
36604

4960
8581

11513
64108

6 1 Ï6
10 UC(h): Os

j51
ai, jc

q21
j 5

cq
i

q
,

?

i 5 1, ..., s, q 5 1, ..., h, (4.8) 1
9

16 1 Ï6
36

16 2 Ï6
36U

D(z): Os

i51
bic

q21
i ai, j 5

bj

q
(1 2 cj)q,

In order to prove (4.13) has order 5, we must show that
the coefficients satisfy D(2). We use the W-transformation

j 5 1, ..., s, q 5 1, ..., z. (4.9) (Hairer and Wanner [18]).
Let Pi(x) be the shifted Legendre polynomials normal-

The importance of these conditions is seen from the follow- ized and let W 5 (wi, j) be defined by wi, j 5 Pj21(ci)), i,
ing well-known theorem. j 5 1, 2, 3, and the matrix

THEOREM 4.3. (Butcher, 1964). If the coefficient bi ,
ci , ai, j satisfy B(p), C(h), D(z) with p # h 1 z 1 1, p #
2h 1 2, then the method is of order p.

XG 51
2As 2j1 0

j1 0 2j2

0 j2 2aQ;
2 , (4.14)

In our situation, s 5 3 and p 5 5, and we consider h 5
z 5 2 so that we have to impose B(5), C(2), D(2).

The conditions B(5) mean that the quadrature formula
where jk 5 1/2Ï4k2 2 1 for k 5 1, 2.is of order 5, and since c1 5 0,

The main theorem (Hairer and Wanner [18, Theorem
5.11]) says that the conditions D(2) are satisfied if and onlyb1 1 b2 1 b3 5 1,
if the first two rows for the matrix X 5 W21AW are those

b2c2 1 b3c3 5 As, of XG , where A is the coefficient matrix for the method.
b2c2

2 1 b3c2
3 5 Ad, (4.10) With the help again of algebraic manipulation package we

confirm that (4.13) is of order five and the method we areb2c3
2 1 b3c3

3 5 Af,
searching. In fact, we have applied (4.13) to a set of exam-b2c4

2 1 b3c4
3 5 Ag.

ples with real steady states, and we have never found spuri-
ous fixed points.Then, b1 , b2 , b3 are the weights and c2 , c3 the nodes of the

Radau quadrature formula of order 5
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